Synthetic biology is an exciting new field that seeks to rationally engineer biological systems using approaches and methods common to well-established engineering disciplines. In the last 15 years, researchers in our lab and others have sought to turn genes and other genetic elements into programmable parts with predictable functions. With these parts, synthetic biologists hope to build complex genetic systems that are capable of a wide range of tasks: from high-throughput screening for new antibiotics, to engineering self-regulating metabolic pathways designed to reduce toxicity to the host organism and increase product titer.

The Keasling Lab has focused on both the basic science that underlies synthetic biology, such as the development of biosensors, characterization of genetic elements, and DNA assembly software, as well as the metabolic engineering applications of this basic science.

Moving forward the Keasling Lab will continue to develop synthetic biology applications for model and non-model organisms with the goal of making reliable and predictable microbial chemical factories a reality.

 

REPRESENTATIVE PUBLICATIONS:

R. Phelan, D. Sachs, S. Petkiewicz, J. Barajas, J. Blake-Hedges, M. Thompson, A.R. Apel, B. Rasor, L. Katz, J. Keasling. 2016. Development of next generation synthetic biology tools for use in Streptomyces venezuelae, ACS Synth. Biol.

M. Brown, A. Mukhopadhyay, J.D. Keasling. 2016. Engineering bacteria to catabolize the carbanaceous component of sarin: teaching E. coli to eat isopropanol. ACS Synth. Biol.

A. Kang, K. W. George, G. Wang, E. Baidoo, J. D. Keasling, and T. S. Lee. 2016. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production. Met. Eng.

P. Javidpour, S. Deutsch, V.K. Mutalik, N. J. Hillson, C. J. Petzold, J. D. Keasling, and H.R. Beller. 2016. Investigation of proposed Ladderane biosynthetic genes from Annamox bacteria by heterologous expression in E. coli. PLoS One

L. d’Espaux, D. Mendez-Perez, R. Li, and J. D. Keasling. 2015. Synthetic biology for microbial production of lipid-based biofuels. Curr. Opin. Chem. Biol.

C. J. Paddon and J. D. Keasling. 2014. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol.

S. Poust, A. Hagan, L. Katz, and J. D. Keasling. 2014. Narrowing the gap between the promise and the reality of polyketide synthases as a synthetic biology platform. Curr. Opin. Biotechnol.

J. D. Keasling, J. C. Anderson, A. Arkin, G. Church, K. Costa, L. Katz, T. Kortemme, N. Kuldell, W. Lim, S. Marqusee, K. Oye, M. Palmer, K. J. Prather, P. Silver, C. Voigt, and R. Weiss. 2014. Synthetic Biology: A global approach. Nature

C. J. Paddon, P. J. Westfall, D. J. Pitera, K. Benjamin, K. Fisher, D. McPhee, M. D. Leavell, A. Tai, A. Main, D. Eng, D. R. Polichuk, K. H. Teoh, D. W. Reed, T. Treynor, J. Lenihan, M. Fleck, S. Bajad, G. Dang, D. Diola, G. Dorin, K. W. Ellens, S. Fickes, J. Galazzo, S. P. Gaucher, T. Geistlinger, R. Henry, M. Hepp, T. Horning, T. Iqbal, H. Jiang, L. Kizer, B. Lieu, D. Melis, N. Moss, R. Regentin, S. Secrest, H. Tsuruta, R. Vazquez, L. F. Westblade, L. Xu, M. Yu, Y. Zhang, L. Zhao, J. Lievense, P. S. Covello, J. D. Keasling, K. K. Reiling, N. S. Renninger & J. D. Newman. 2013. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature

H. H. Chou and J. D. Keasling. 2013. Programming adaptive control to evolve increased metabolite production. Nat. Commun.

R. H. Dahl, F. Zhang, J. Alonso-Gutierrez, E. Baidoo, T. S. Batth, A. M. Redding-Johanson, C. J. Petzold, A. Mukhopadhyay, T. Soon Lee, P. D. Adams, and J. D. Keasling. 2013. Engineering dynamic pathway regulation using stress-response promoters. Nat. Biotechnol.

D. Juminaga, E. E. Baidoo, A. M. Redding-Johanson, T. S. Batth, H. Burd, A. Mukhopadhyay, C. J. Petzold, and J. D. Keasling. 2012. Modular engineering of L-tyrosine production in Escherichia coli. Appl. Environ. Microbiol. 78:89-98.

P. J. Westfall, D. J. Pitera, J. R. Lenihan, D. Eng, F. Woolard, R. Regentin, T. Horning, Hiroko Tsuruta, D. Melis, A. Owens, S. Fickes, D. Diola, J. D. Keasling, M. D. Leavell, D. McPhee, N. S. Renninger, J. D. Newman, C. J. Paddon. 2012. Production of Amorpha-4,11-diene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc. Natl. Acad. Sci.

F. Zhang, J. M. Carothers, and J. D. Keasling. 2012. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol.

P. P. Peralta-Yahya, F. Zhang, S. B. del Cardayre, and J. D. Keasling. 2012. Microbial engineering for the production of advanced biofuels. Nature

N. J. Hillson, R. D. Rosengarten, and J. D. Keasling. 2012. j5 DNA assembly design automation software. ACS Syn. Biol.

G. Bokinsky, P. Peralta-Yahya, A. George, B. M. Holmes, E. J. Steen, J. Dietrich, T. S. Lee, D. Tullman-Ercek, C. Voigt, B. A. Simmons, J. D. Keasling. 2011. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc. Natl. Acad. Sci.

J. M. Carothers, J. A. Goler, D. Juminaga, and J. D. Keasling. 2011. Model-driven engineering of RNA devices to quantitatively program gene expression. Science

E. J. Steen, Y. Kang, G. Bokinsky, Z. Hu, A. Schirmer, A. McClure, S. B. del Cardayre, and J. D. Keasling. 2010. Microbial production of fatty acid-derived fuels and chemicals from plant biomass. Nature

J. E. Dueber, G. C. Wu, G. R. Malmirchegini, T. S. Moon, C. J. Petzold, A. V. Ullal, K. J. Prather, and J. D. Keasling. 2009. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol.