The Keasling lab focuses on engineering cellular metabolism to produce specific chemicals, degrade environmental contaminants, or utilize alternative carbon sources. While societies have harnessed microbes and their metabolisms for centuries, the deliberate engineering of metabolism through rationally designed DNA constructs is a relatively new field termed Metabolic Engineering. The Keasling lab has developed several platform pathways which enable the production of a large number of chemicals across the spectrum from low to high volume.

Specific examples include pharmaceuticals (the anti-malarial drug precursor artemisinic acid through the mevalonate pathway); fine chemicals (methylketones as flavors and fragrances via the reverse beta-oxidation pathway); commodity chemicals (biodegradable plastics via the polyhydroxyalkanoate biosynthesis pathway); and biofuels (bisabolene and pinene via the mevalonate pathway and fatty acids and fatty alcohols via fatty acid biosynthesis).

To make these products more sustainable and reduce the required arable land usage, the lab has worked on upstream platform pathways to utilize diverse carbon sources (cellulosic biomass and lignin). These carbon sources are attractive because of their low cost, high availability, and lack of alternative uses. The lab has also worked on environmental remediation including engineering microorganisms to completely mineralize nerve agents, rendering them harmless, and to sequester toxic heavy metals.

To aid in these diverse projects, the Keasling lab also develops tools with the aim to increase the speed of construction, predictability and success rate of Metabolic Engineering projects. These tools generally come in four categories; biosensors and dynamic regulators which can sense metabolite concentrations and moderate genetic pathways levels accordingly (pgadE for bisabolene production); well characterized and well characterized genetic parts which can be used to drive genes of interest (biobrick plasmids); computational tools to predict flux and the effects of gene knock outs; and analytical tools and protocols to measure production of products and intermediates to troubleshoot pathway bottlenecks (LCMS and GCMS).

REPRESENTATIVE PUBLICATIONS
  • J. D. Keasling, S. J. Van Dien, and J. Pramanik. 1998. “Engineering polyphosphate metabolism in Escherichia coli: implications for bioremediation of inorganic contaminants.” Biotechnol. Bioeng. 58:231-239.
  • J. D. Keasling and S.-W. Bang. 1998. “Recombinant DNA techniques for bioremediation and environmentally-friendly synthesis.” Curr. Opin. Biotechnol. 9:135-140.
  • S. J. Van Dien and J. D. Keasling. 1998. “Optimization of polyphosphate degradation and phosphate secretion using hybrid metabolic pathways and engineered host strains.” Biotechnol. Bioeng. 59:754-761.
  • S. J. Van Dien and J. D. Keasling. 1998. “Control of polyphosphate metabolism in genetically-engineered Escherichia coli.” Enzyme Microb. Technol. 24:21-25.
  • D. S. Reichmuth, J. L. Hittle, H. W. Blanch, and J. D. Keasling. 2000. “Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene.” Biotechnol. Bioeng. 67:72-79.
  • J. D. Keasling, S. J. Van Dien, P. Trelstad, N. Renninger, and K. McMahon. 2000. “Application of polyphosphate metabolism to environmental and biotechnological problems.” Biochemistry (Moscow). 65:324-331.
  • S.-W. Bang, D. S. Clark, and J. D. Keasling. 2000. “Engineering hydrogen sulfide production and cadmium removal by expression of the thiosulfate reductase gene (phsABC) from Salmonella enterica serovar Typhimurium in Escherichia coli.” Appl. Environ. Microbiol. 66:3939-3944.
  • C. L. Wang, P. D. Maratukulam, A. M. Lum, D. S. Clark, and J. D. Keasling. 2000. “Metabolic engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface.” Appl. Environ. Microbiol. 66:4497-4502.
  • S.-W. Bang, D. S. Clark, and J. D. Keasling. 2000. “Cadmium, lead, and zinc removal by expression of the thiosulfate reductase gene from Salmonella typhimurium in Escherichia coli.” Biotechnol. Lett. 22:1331-1335.
  • K. L. Jones, S.-W. Kim, and J. D. Keasling. 2000. “Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria.” Met. Eng. 2:328-338.
  • S.-W. Kim and J. D. Keasling. 2001. “Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production.” Biotechnol. Bioeng. 72:408-415.
  • C. L. Wang, A. M. Lum, S. C. Ozuna, D. S. Clark, and J. D. Keasling. 2001. “Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene.” Appl. Microbiol. Biotechnol. 56:425-430.
  • I. Aldor and J. D. Keasling. 2001. “Metabolic engineering of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composition in recombinant Salmonella enterica serovar Typhimurium.” Biotechnol. Bioeng. 76:108-114.
  • C. L. Wang, D. S. Clark, and J. D. Keasling. 2001. “Analysis of an engineered sulfate reduction pathway and cadmium precipitation on the cell surface.” Biotechnol. Bioeng. 75:285-291.
  • C. D. Smolke, V. J. J. Martin, and J. D. Keasling. 2001. “Controlling the metabolic flux through the carotenoid pathway using directed mRNA processing and stabilization.” Met. Eng. 3:313-321.
  • V. J. J. Martin, Y. Yoshikuni, and J. D. Keasling. 2001. “The in vivo synthesis of plant sesquiterpenes in Escherichia coli.” Biotechnol. Bioeng. 75:497-503.
  • A. W. Walker and J. D. Keasling. 2002. “Metabolic engineering of Pseudomonas putida for the utilization of parathion as a carbon and energy source.” Biotechnol. Bioeng. 78:715-721.
  • V. J. J. Martin, C. D. Smolke, and J. D. Keasling. 2002. “Redesigning cells for production of complex organic molecules.” ASM News 68:336-343.
  • I. S. Aldor, S.-W. Kim, K. L. Jones, and J. D. Keasling. 2002. “Metabolic engineering of a novel propionate-independent pathway for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Salmonella enterica serovar Typhimurium.” Appl. Environ. Microbiol. 68:3848-3854.
  • G.-Y. Wang and J. D. Keasling. 2002. “Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa.” Met. Eng. 4:193-201.
  • V. J. J. Martin, D. J. Pitera, S. T. Withers, J. D. Newman, and J. D. Keasling. 2003. “Engineering the mevalonate pathway in Escherichia coli for production of terpenoids.” Nat. Biotechnol. 21:796-802.
  • I. S. Aldor and J. D. Keasling. 2003. “Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates.” Curr. Opin. Biotechnol. 14:475-483.
  • C. Khosla and J. D. Keasling. 2003. “Metabolic engineering for drug discovery and development.” Nature Rev. Drug Disc. 2:1019-1025.
  • K. K. Reiling, Y. Yoshikuni, V. J. J. Martin, J. Newman, J. Bohlmann, and J. D. Keasling. 2004. “Mono and diterpene production in Escherichia coli.” Biotechnol. Bioeng. 87:200-212.
  • D. S. Reichmuth, H. W. Blanch, and J. D. Keasling. 2004. “Dibenzothiophene desulfurization pathway improvement using diagnostic GFP fusions.” Biotechnol. Bioeng. 88:94-99.
  • N. Renninger, R. Knopp, H. Nitsche, D.S. Clark, J. D. Keasling. 2004. “Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism.” Appl. Environ. Microbiol. 70:7404-7412.
  • D-K. Ro, E. M. Paradise, M. Ouellet, K. J. Fisher, K. L. Newman, J. M. Ndungu, K. A. Ho, R. A. Eachus, R. S. Ham, J. Kirby, M. C. Y. Chang, S. T. Withers, Y. Shiba, R. Sarpong, and J. D. Keasling. 2006. “Production of the antimalarial drug precursor artemisinic acid in engineered yeast.” Nature 440:940-943.
  • Y. Yoshikuni, T. E. Ferrin, and J. D. Keasling. 2006. “Designed divergent evolution of enzyme function.” Nature 440:1078-1082.
  • S. H. Yoon, Y. M. Lee, J. E. Kim, S. H. Lee, J. H. Lee, J. Y. Kim, K. H. Jung, Y. C. Shin, J. D. Keasling, and S. W. Kim. 2006. “Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate.” Biotechnol. Bioeng. 94:1025-1032.
  • B. F. Pfleger, D. J. Pitera, C. D. Smolke, and J. D. Keasling. 2006. “Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes.” Nat. Biotechnol. 24:1027-1032.
  • H. S. Zahiri, S. H. Yoon, J. D. Keasling, S. H. Lee, K. S. Won, S. C. Yoon, and Y. C. Shin. 2006. “Coenzyme Q(10) production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway.” Metab. Eng. 8:406-416.
  • J. D. Newman, J. Marshal, M. Chang, F. Nowroozi, E. Paradise, D. Pitera, K. L. Newman, and J. D. Keasling. 2006. “High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineering Escherichia coli.” Biotechnol. Bioeng. 95:684-691.
  • M. Mattozzi, S. Tehara, and J. D. Keasling. 2006. “Mineralization of paraoxon and use as a sole C and P source by a rationally designed catabolism in Pseudomonas putida.” Appl. Environ. Microbiol. 72:6699-6706.
  • M. C. Y. Chang and J. D. Keasling. 2006. “Production of isoprenoid pharmaceuticals by engineered microbes.” Nat. Chem. Biol. 2:674-681.
  • D. Lubertozzi and J. D. Keasling. 2006. “Marker and promoter effects on heterologous expression in Aspergillus nidulans.” Appl. Microbiol. Biotechnol. 72:1014-1023.
  • S. T. Withers and J. D. Keasling. 2007. “Biosynthesis and engineering of isoprenoid small molecules.” Appl. Microbiol. Biotechnol. 73:980-990.
  • S. H. Yoon, J. E. Kim, S. H. Lee, H. M. Park, M. S. Choi, J. Y. Kim, S. H. Lee, Y. C. Shin, J. D. Keasling, and S. W. Kim. 2007. “Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis.” Appl. Microbiol. Biotechnol. 74:131-139.
  • Y. Shiba, E. M. Paradise, J. Kirby, D.-K. Ro, and J. D. Keasling. 2007. “Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids.” Metab. Eng. 9:160-168.
  • D. J. Pitera, C. J. Paddon, J. D. Newman, and J. D. Keasling. 2007. “Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli.” Metab. Eng. 9:193-207.
  • Y. Yoshikuni and J. D. Keasling. 2007. “Pathway engineering by designed divergent evolution.” Curr. Opin. Chem. Biol. 11:233-239.
  • M. C. Y. Chang, R. A. Eachus, W. Trieu, D.-K. Ro, and J. D. Keasling. 2007. “Engineering Escherichia coli for production of functionalized terpenoids using plant P450s.” Nature Chem. Biol. 3:274-277.
  • S. H. Yoon, H. M. Park, J. E. Kim, S. H. Lee, M. S. Choi, J. Y. Kim, D. K. Oh, J. D. Keasling, and S. W. Kim. 2007. “Increased beta-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor Pathway with mevalonate addition.” Biotechnol. Prog. 23:599-605.
  • S. T. Withers, S. S. Gottlieb, B. Lieu, J. D. Newman, and J. D. Keasling. 2007. “Identification of isopentenol biosynthetic genes from Bacillus subtilis using isoprenoid precursor toxicity.” Appl. Environ. Microbiol. 73:6277-6283.
  • B. M. T. da Costa, K. Cornish, and J. D. Keasling. 2007. “Manipulation of intracellular magnesium levels in Saccharomyces cerevisiae with deletion of magnesium transporters.” Appl. Microbiol. Biotechnol. 77:411-425.
  • V. Hale, J. D. Keasling, N. Renninger, and T. T. Diagana. 2007. “Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable anti-malarial drugs.” Am. J. Trop. Med. Hyg. 77:198-202.
  • J. D. Keasling. 2008. “Synthetic biology for synthetic chemistry.” ACS Chem. Biol. 3:64-76.
  • J. D. Keasling and H. Chou. 2008, “Metabolic engineering delivers next-generation biofuels.” Nat. Biotechnol. 26:298-299.
  • J. Kirby, D. W. Romanini, E. M. Paradise, and J. D. Keasling. 2008. “Engineering triterpene production in Saccharomyces cerevisiae – beta-amyrin synthase from Artemisia annua.” FEBS J. 275:1852-1859.
  • E. M. Paradise, J. Kirby, R. Chan, and J. D. Keasling. 2008. “Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by downregulating squalene synthase.” Biotechnol. Bioeng. 100:371-378.
  • A. Mukhopadhyay, A. M. Redding, B. J. Rutherford, and J. D. Keasling. 2008. “Importance of systems biology in engineering microbes for biofuel production.” Curr. Opin. Biotechnol. 19:228-234.
  • J. L. Fortman, S. Chhabra, A. Mukhopadhyay, H. Chou, T. S. Lee, E. Steen, and J. D. Keasling. 2008. “Biofuel alternatives to ethanol: pumping the microbial well.” Trends in Biotechnology. 26:375-381.
  • Y. Yoshikuni, J. A. Dietrich, F. F. Nowroozi, P. C. Babbitt, and J. D. Keasling. 2008. “Redesigning enzymes based on adaptive evolution for optimal function in synthetic metabolic pathways.” Chem. Biol. 15:607-618.
  • J. Kirby and J. D. Keasling. 2008. “Metabolic engineering of microorganisms for isoprenoid production.” Nat. Prod. Rep. 25:656-661.
  • S. K. Lee, H. Chou, T. S. Ham, T. S. Lee and J. D. Keasling. 2008. “Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels.” Curr. Opin. Biotechnol. 19:556-563.
  • E. J. Steen, R. Chan, N. Prasad, S. Myers, C. J. Petzold, A. Redding, M. Ouellet, and J. D. Keasling. 2008. “Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol.” Microb. Cell Fact. 7:36-43.
  • J. R. Anthony, L. C. Anthony, F. Nowroozi, G. Kwon, J. D. Newman, and J. D. Keasling. 2009. “Optimization of the mevalonate-based isoprenoid biosynthetic pathway in E. coli for production of the anti-malarial drug precursor amorpha-4,11-diene.” Met. Eng. 11:13-19.
  • H. Tsuruta, C. J. Paddon, D. Eng, J. R. Lenihan, T. Horning, L. C. Anthony, R. Regentin, J. D. Keasling, N. S. Renninger, and J. D. Newman. 2009. “High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli.” PLOS One 4:e4489 doi:10.1371.
  • J. Dietrich, Y. Yoshikuni, K. Fisher, F. Woolard, D. Ockey, D. McPhee, N. Renninger, M. Chang, D. Baker, and J. D. Keasling. 2009. “A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450BM3.” ACS Chem. Biol. 4:261-267.
  • J. Kirby and J. D. Keasling. 2009. “Biosynthesis of plant isoprenoids: perspectives for microbial engineering.” Annu. Rev. Plant Biol. 60:335.355.
  • S. H. Yoon, S. H. Lee, A. Das, H. K. Ryu, H. J. Jang, J. Y. Kim, D. K. Oh, J. D. Keasling, and S. W. Kim. 2009. “Combinatorial expression of bacterial whole mevalonate pathway for production of beta-carotene in E. coli.” J. Biotechnol. 140:218-226.
  • J. E. Dueber, G. C. Wu, G. R. Malmirchegini, T. S. Moon, C. J. Petzold, A. V. Ullal, K. J. Prather, and J. D. Keasling. 2009. “Synthetic protein scaffolds provide modular control over metabolic flux.” Nat. Biotechnol. 27:753-759.
  • J. M. Carothers, J. A. Goler, and J. D. Keasling. 2009. “Chemical synthesis using synthetic biology.” Curr. Opin. Biotechnol. 20:498-503.
  • E. J. Steen, Y. Kang, G. Bokinsky, Z. Hu, A. Schirmer, A. McClure, S. B. del Cardayre, and J. D. Keasling. 2010. “Microbial production of fatty acid-derived fuels and chemicals from plant biomass.” Nature 463:559-562.
  • P. P. Peralta-Yahya and J. D. Keasling. 2010. “Advanced biofuel production in microbes.” Biotechnol. J. 5:147-162.
  • J. A. Dietrich, A. E. McKee, and J. D. Keasling. 2010. “High-throughput metabolic engineering: advances in small-molecule screening and selection.” Annu. Rev. Biochem. 79:563-590.
  • M. de la Pena Mattozzi and J. D. Keasling. 2010. “Rationally engineered biotransformation of p-nitrophenol.” Biotechnol. Prog. 26:616-621.
  • J. Kirby, M. Nishimoto, J. G. Park, S. T. Withers, F. Nowroozi, D. Behrendt, E. J. Rutledge, J. L. Fortman, H. E. Johnson, J. V. Anderson, and J. D. Keasling. 2010. “Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae.” Phytochem. 71:1466-1473.
  • C. Wang, S. H. Yoon, A. A. Shah, Y. R. Chung, J. Y. Kim, E. S. Choi, J. D. Keasling, and S. W. Kim. 2010. “Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway.” Biotechnol. Bioeng. 107:421-429.
  • J. D. Keasling. 2010. “Manufacturing molecules through metabolic engineering.” Science 330:1355-1358.
  • A. Eudes, E. E. Baidoo, F. Yang, H. Burd, M. Z. Hadi, F. W. Collins, J. D. Keasling, and D. Loqué. 2010. “Production of tranilast [N-(3′,4′-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae.” Appl. Microbiol. Biotechnol. 89:989-1000.
  • F. Zhang and J. D. Keasling. 2011. “Biosensors and their applications in microbial metabolic engineering.” Trends Microbiol. 19:323-329.
  • J. Nielsen and J. D. Keasling. 2011. “Synergies between synthetic biology and metabolic engineering.” Nat. Biotechnol. 29:693-695.
  • P. P. Peralta-Yahya, M. Ouellet, R. Chan, A. Mukhopadhyay, J. D. Keasling, and T. S. Lee. 2011. “Identification and microbial production of a terpene-based advanced biofuel.” Nat. Comm. 2:483.
  • S. M. Ma, D. E. Garcia, A. M. Redding-Johanson, G. D. Friedland, R. Chan, T. S. Batth, J. R. Haliburton, D. Chivian, J. D. Keasling, C. J. Petzold, T. S. Lee, S. R. Chhabra. 2011. “Optimization of a heterologous mevalonate pathway through use of variant HMG-CoA reductases.” Met. Eng. 13:588-597.
  • F. Zhang, S. Rodriquez, and J. D. Keasling. 2011. “Metabolic engineering of microbial pathways for advanced biofuels production.” Curr. Opin. Biotechnol. 22:775-783.
  • G. Bokinsky, P. Peralta-Yahya, A. George, B. M. Holmes, E. J. Steen, J. Dietrich, T. S. Lee, D. Tullman-Ercek, C. Voigt, B. A. Simmons, J. D. Keasling. 2011. “Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli.” Proc. Natl. Acad. Sci. USA 108:19949-19954.
  • E. B. Goh, E. E. Baidoo, J. D. Keasling, and H. R. Beller. 2012. “Engineering of bacterial methyl ketone synthesis for biofuels.” Appl. Environ. Microbiol. 78:70-80.
  • D. Juminaga, E. E. Baidoo, A. M. Redding-Johanson, T. S. Batth, H. Burd, A. Mukhopadhyay, C. J. Petzold, and J. D. Keasling. 2012. “Modular engineering of L-tyrosine production in Escherichia coli.” Appl. Environ. Microbiol. 78:89-98.
  • Y. Satoh, K. Tajima, M. Munekata, J. D. Keasling, and T. S. Lee. 2012. “Engineering of a tyrosol-producing pathway, utilizing simple sugar and the central metabolite tyrosine, in Escherichia coli.” J. Agric. Food Chem. 60:979-984.
  • P. J. Westfall, D. J. Pitera, J. R. Lenihan, D. Eng, F. Woolard, R. Regentin, T. Horning, Hiroko Tsuruta, D. Melis, A. Owens, S. Fickes, D. Diola, J. D. Keasling, M. D. Leavell, D. McPhee, N. S. Renninger, J. D. Newman, C. J. Paddon. 2012. “Production of Amorpha-4,11-diene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin.” Proc. Natl. Acad. Sci. USA 109:E111-E118.
  • S. Kumar, F. M. Hahn, E. Baidoo, T. S. Kahlon, D. F. Wood, C. M. McMahan, K. Cornish, J. D. Keasling, H. Daniell, and M. C. Whalen. 2012. “Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts.” Met. Eng. 14:19-28.
  • J. D. Keasling. 2012. “Synthetic biology and the development of tools for metabolic engineering.” Met. Eng. 14:189-195.
  • F. Zhang, J. M. Carothers, and J. D. Keasling. 2012. “Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids.” Nat. Biotechnol. 30:354-359.
  • P. Singh, T. S. Batth, D. Juminaga, R. H. Dahl, J. D. Keasling, P. D. Adams, and C. J. Petzold. 2012. “Application of targeted proteomics to metabolically engineered Escherichia coli.” Proteomics 12:1289-1299.
  • P. P. Peralta-Yahya, F. Zhang, S. B. del Cardayre, and J. D. Keasling. 2012. “Microbial engineering for the production of advanced biofuels.” Nature 488:320-328.
  • H. H. Chou and J. D. Keasling. 2012. “Five-carbon alcohols are produced from isopentenyl diphosphate using a synthetic pathway.” Appl. Environ. Microbiol. 78:7829-7855.
  • A. E. Mckee, B. J. Rutherford, D. C. Chivian, E. K. Baidoo, D. Juminaga, D. Kuo, P. I. Benke, J. A. Dietrich, S. M. Ma, A. P. Arkin, C. J. Petzold, P. D. Adams, J. D. Keasling and S. R. Chhabra. 2012. “Manipulation of the carbon storage regulator system for metabolite remodeling and biofuel production in Escherichia coli.” Microb. Cell Fact. 11:79 (doi:10.1186/1475-2859-11-79).
  • J. D. Keasling, A. Mendoza, and P. S. Baran. 2012. “Synthesis: A constructive debate.” Nature 492:188-189.
  • Y. Satoh, K. Tajima, M. Munekata, J. D. Keasling, and T. S. Lee. 2012. “Engineering of L-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol.” Met. Eng. 14:603-610.
  • Y. Kung, W. Runguphan, and J. D. Keasling. 2012. “From fields to fuels: recent advances in the microbial production of biofuels.” ACS Synth. Biol. 1:498-513.
  • S. Yuzawa, N. Chiba, L. Katz, and J. D. Keasling. 2012. “Construction of a part of a 3-hydroxypropionate cycle for heterologous polyketide biosynthesis in Escherichia coli.” Biochemistry 51:9779-9781.
  • S. M. Paap, T. H. West, D. K. Manley, E. J. Steen, H. R. Beller, J. D. Keasling, D. C. Dibble, S. Chana, and B. A. Simmons. 2013. “Biochemical production of ethanol and fatty acid ethyl esters from switchgrass: A comparative analysis of environmental and economic performance.” Biomass Bioenergy 49:49-62.
  • B. Ozaydin, H. Burd, T. S. Lee, and J. D. Keasling. 2013. “Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production.” Met. Eng. 15:174-183.
  • C. J. Paddon, P. J. Westfall, D. J. Pitera, K. Benjamin, K. Fisher, D. McPhee, M. D. Leavell, A. Tai, A. Main, D. Eng, D. R. Polichuk, K. H. Teoh, D. W. Reed, T. Treynor, J. Lenihan, M. Fleck, S. Bajad, G. Dang, D. Diola, G. Dorin, K. W. Ellens, S. Fickes, J. Galazzo, S. P. Gaucher, T. Geistlinger, R. Henry, M. Hepp, T. Horning, T. Iqbal, H. Jiang, L. Kizer, B. Lieu, D. Melis, N. Moss, R. Regentin, S. Secrest, H. Tsuruta, R. Vazquez, L. F. Westblade, L. Xu, M. Yu, Y. Zhang, L. Zhao, J. Lievense, P. S. Covello, J. D. Keasling, K. K. Reiling, N. S. Renninger & J. D. Newman. 2013. “High-level semi-synthetic production of the potent antimalarial artemisinin.” Nature 496:528-532.
  • J. Alonso-Gutierrez, R. Chan, T. S Batth, P. D Adams, J. D. Keasling, C. J Petzold, and T. S. Lee. 2013. “Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Met. Eng. 19:33-41.
  • A. Eudes, D. Juminaga, E. E. Baidoo, F. W. Collins, J. D. Keasling, and D. Loque. 2013. “Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli.” Microb. Cell Fact. 12:62
  • P. Javidpour, J. H. Pereira, E. B. Goh, R. P. McAndrew, S. M. Ma, G. D. Friedland, J. D. Keasling, S. R. Chhabra, P. D. Adams, and H. R. Beller. 2014. “Biochemical and structural studies of NADH-dependent FabG used to increase the bacterial production of fatty acids under anaerobic conditions.” Appl. Environ. Microbiol. 80(2):497-505. doi: 10.1128/AEM.03194-13
  • W. Runguphan and J. D. Keasling. 2014. “Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Met. Eng. 21:103-113.
  • F. F. Nowroozi, E. E. Baidoo, S. Ermakov, A. M. Redding-Johanson, T. S. Batth, C. J. Petzold, and J. D. Keasling. 2013. “Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly.” Appl. Microbiol. Biotechnol. 98:1567-1581.
  • S. D. Colloms, C. A. Merrick, F. J. Olorunniji, W. M. Stark, M. C. Smith, A. Osbourn, J. D. Keasling, and S. J. Rosser. 2014. “Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination.” Nucl. Acids Res. 42(4).e23. doi:10.1093/nar/gkt1101.
  • J. Nielsen, M. Fusseneggar, J. Keasling, S. Y. Lee, J. C. Liao, K. Prather, and B. Palsson. 2014. “Engineering synergy in biotechnology.” Nat. Chem. Biol. 10:319-322.
  • C. J. Paddon and J. D. Keasling. 2014. “Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development.” Nat. Rev. Microbiol. 12:355-367.
  • S. Sarria, B. Wong, H. G. Martin, J. D. Keasling, and P. Peralta-Yahya. “Microbial synthesis of pinine.” ACS Synth. Biol. 3:466-475.
  • K. W. George, A. Chen, A. Jain. T. S. Batth, E. E. Baidoo, G. Wang, P. D. Adams, C. J. Petzold, J. D. Keasling, and T. S. Lee. 2014. “Correlation analysis of targeted proteins and metabolites to assess and engineering microbial isopentenol production.” Biotechnol. Bioeng. 111(8):1648-1658.
  • J. Kirby, M. Nishimoto, R. W. Chow, V. N. Pasumarthi, R. Chan, L. J. Chan, C. J. Petzold, and J. D. Keasling. 2014. “Use of non-ionic surfactants for improvement of terpene production in Saccharomyces cerevisiae.” Appl. Environ. MIcrobiol. 80(21):6685-6693.
  • E.-B. Goh, E. E. Baidoo, H. Burd, T. S. Lee, Jay D Keasling, and H. Beller. 2014. “Substantial improvements in methyl ketone production in E. coli and insights on the pathway from in vitro studies.” Met. Eng. 26:67-76.
  • M. Frederix, K. Hütter, J. Leu, T. S. Batth, W. J. Turner, T. L. Rüegg, H. W. Blanch, B. A. Simmons, P. D. Adams, J. D. Keasling, M. P. Thelen, M. J. Dunlop, C. J. Petzold, and A. Mukhopadhyay. 2014. “Development of a native Escherichia coli induction system for ionic liquid tolerance.” PLoS One 9(7):e101115. doi: 10.1371/journal.pone.0101115
  • R. W. Haushalter, W. Kim, T. A. Chavkin, L. The, M. E. Garber, M. Nhan, C. J. Petzold, L. Katz, and J. D. Keasling. 2014. “Production of anteiso-branched fatty acids in Escherichia coli; next generation biofuels with improved cold-flow properties.” Met. Eng. 26:111-118. doi, 10.1016/j.ymben.2014.09.002.
  • J. L. Foo, H. M. Jensen, R. H. Dahl, K. George, J. D. Keasling, T. S. Lee, S. Leong, A. Mukhopadhyay. 2014. “Improving Microbial Biogasoline Production in Escherichia coli Using Tolerance Engineering.” mBio 5(6):e01932-14. doi: 10.1128/mBio.01932-14.
  • L. J. Weaver, M. M. Sousa, G. Wang, E. Baidoo, C. J. Petzold, and J. D. Keasling. 2015. “A kinetic-based approach to understanding heterologous mevalonate pathway function in E. coli.” Biotechnol. Bioeng. 112(1):111-119.
  • J. Kirby, M. Nishimoto, R. W. Chow, E. E. Baidoo, G. Wang. J. Martin, W. Schackwitz, R. Chan, J. L. Fortman, and J. D. Keasling. 2015. “Enhancing terpene yield from sugars via novel routes to 1-deoxy-d-xylulose 5-phosphate.” Appl. Environ. Microbiol. 81:130-138.
  • J. Alonso-Gutierrez, E.-M. Kim; T. S. Batth, N. Cho, Q. Hu, L. J. G. Chan, C. J. Petzold, Nathan J Hillson, P. D. Adams, J. D. Keasling, H. Garcia-Martin, and T. S. Lee. 2015. “Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering.” Met. Eng. 28:123-133.